Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 13: 760000, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35399264

RESUMO

Introduction: Representation learning allows artificial intelligence (AI) models to learn useful features from large, unlabelled datasets. This can reduce the need for labelled data across a range of downstream tasks. It was hypothesised that wave segmentation would be a useful form of electrocardiogram (ECG) representation learning. In addition to reducing labelled data requirements, segmentation masks may provide a mechanism for explainable AI. This study details the development and evaluation of a Wave Segmentation Pretraining (WaSP) application. Materials and Methods: Pretraining: A non-AI-based ECG signal and image simulator was developed to generate ECGs and wave segmentation masks. U-Net models were trained to segment waves from synthetic ECGs. Dataset: The raw sample files from the PTB-XL dataset were downloaded. Each ECG was also plotted into an image. Fine-tuning and evaluation: A hold-out approach was used with a 60:20:20 training/validation/test set split. The encoder portions of the U-Net models were fine-tuned to classify PTB-XL ECGs for two tasks: sinus rhythm (SR) vs atrial fibrillation (AF), and myocardial infarction (MI) vs normal ECGs. The fine-tuning was repeated without pretraining. Results were compared. Explainable AI: an example pipeline combining AI-derived segmentation masks and a rule-based AF detector was developed and evaluated. Results: WaSP consistently improved model performance on downstream tasks for both ECG signals and images. The difference between non-pretrained models and models pretrained for wave segmentation was particularly marked for ECG image analysis. A selection of segmentation masks are shown. An AF detection algorithm comprising both AI and rule-based components performed less well than end-to-end AI models but its outputs are proposed to be highly explainable. An example output is shown. Conclusion: WaSP using synthetic data and labels allows AI models to learn useful features for downstream ECG analysis with real-world data. Segmentation masks provide an intermediate output that may facilitate confidence calibration in the context of end-to-end AI. It is possible to combine AI-derived segmentation masks and rule-based diagnostic classifiers for explainable ECG analysis.

2.
J Biomed Inform ; 122: 103905, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34481056

RESUMO

Compartment-based infectious disease models that consider the transmission rate (or contact rate) as a constant during the course of an epidemic can be limiting regarding effective capture of the dynamics of infectious disease. This study proposed a novel approach based on a dynamic time-varying transmission rate with a control rate governing the speed of disease spread, which may be associated with the information related to infectious disease intervention. Integration of multiple sources of data with disease modelling has the potential to improve modelling performance. Taking the global mobility trend of vehicle driving available via Apple Maps as an example, this study explored different ways of processing the mobility trend data and investigated their relationship with the control rate. The proposed method was evaluated based on COVID-19 data from six European countries. The results suggest that the proposed model with dynamic transmission rate improved the performance of model fitting and forecasting during the early stage of the pandemic. Positive correlation has been found between the average daily change of mobility trend and control rate. The results encourage further development for incorporation of multiple resources into infectious disease modelling in the future.


Assuntos
COVID-19 , Malus , Previsões , Humanos , Pandemias , SARS-CoV-2
3.
J Electrocardiol ; 69S: 7-11, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34548191

RESUMO

Automated interpretation of the 12-lead ECG has remained an underpinning interest in decades of research that has seen a diversity of computing applications in cardiology. The application of computers in cardiology began in the 1960s with early research focusing on the conversion of analogue ECG signals (voltages) to digital samples. Alongside this, software techniques that automated the extraction of wave measurements and provided basic diagnostic statements, began to emerge. In the years since then there have been many significant milestones which include the widespread commercialisation of 12-lead ECG interpretation software, associated clinical utility and the development of the related regulatory frameworks to promote standardised development. In the past few years, the research community has seen a significant rejuvenation in the development of ECG interpretation programs. This is evident in the research literature where a large number of studies have emerged tackling a variety of automated ECG interpretation problems. This is largely due to two factors. Specifically, the technical advances, both software and hardware, that have facilitated the broad adoption of modern artificial intelligence (AI) techniques, and, the increasing availability of large datasets that support modern AI approaches. In this article we provide a very high-level overview of the operation of and approach to the development of early 12-lead ECG interpretation programs and we contrast this to the approaches that are now seen in emerging AI approaches. Our overview is mainly focused on highlighting differences in how input data are handled prior to generation of the diagnostic statement.


Assuntos
Cardiologia , Aprendizado Profundo , Algoritmos , Inteligência Artificial , Eletrocardiografia , Humanos
4.
Eur Heart J Digit Health ; 2(1): 127-134, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36711180

RESUMO

Aims: Deep learning (DL) has emerged in recent years as an effective technique in automated ECG analysis. Methods and results: A retrospective, observational study was designed to assess the feasibility of detecting induced coronary artery occlusion in human subjects earlier than experienced cardiologists using a DL algorithm. A deep convolutional neural network was trained using data from the STAFF III database. The task was to classify ECG samples as showing acute coronary artery occlusion, or no occlusion. Occluded samples were recorded after 60 s of balloon occlusion of a single coronary artery. For the first iteration of the experiment, non-occluded samples were taken from ECGs recorded in a restroom prior to entering theatres. For the second iteration of the experiment, non-occluded samples were taken in the theatre prior to balloon inflation. Results were obtained using a cross-validation approach. In the first iteration of the experiment, the DL model achieved an F1 score of 0.814, which was higher than any of three reviewing cardiologists or STEMI criteria. In the second iteration of the experiment, the DL model achieved an F1 score of 0.533, which is akin to the performance of a random chance classifier. Conclusion: The dataset was too small for the second model to achieve meaningful performance, despite the use of transfer learning. However, 'data leakage' during the first iteration of the experiment led to falsely high results. This study highlights the risk of DL models leveraging data leaks to produce spurious results.

5.
IEEE J Transl Eng Health Med ; 8: 1900410, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32399316

RESUMO

OBJECTIVE: The Internet of Things provide solutions for many societal challenges including the use of unmanned aerial vehicles to assist in emergency situations that are out of immediate reach for traditional emergency services. Out of hospital cardiac arrest (OHCA) can result in death with less than 50% of victims receiving the necessary emergency care on time. The aim of this study is to link real world heterogenous datasets to build a system to determine the difference in emergency response times when having aerial ambulance drones available compared to response times when depending solely on traditional ambulance services and lay rescuers who would use nearby publicly accessible defibrillators to treat OHCA victims. METHOD: The system uses the geolocations of public accessible defibrillators and ambulance services along with the times when people are likely to have a cardiac arrest to calculate response times. For comparison, a Genetic Algorithm has been developed to determine the strategic number and positions of drone bases to optimize OHCA emergency response times. CONCLUSION: Implementation of a nationwide aerial drone network may see significant improvements in overall emergency response times for OHCA incidents. However, the expense of implementation must be considered.

7.
Curr Opin Pulm Med ; 22(1): 32-7, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26574716

RESUMO

PURPOSE OF REVIEW: Optimal asthma management includes both the control of asthma symptoms and reducing the risk of future asthma exacerbations. Traditionally, treatment has been adjusted largely on the basis of symptoms and lung function and for many patients, this approach delivers both excellent symptom control and reduced risk. However, the relationship between these two key components of the disease may vary between different asthmatic phenotypes and disease severities and there is increasing recognition of the need for more individualized treatment approaches. RECENT FINDINGS: A number of factors which predict exacerbation risk have been identified including demographic and behavioural features and specific inflammatory biomarkers. Type-2 cytokine-driven eosinophilic airways inflammation predisposes to frequent exacerbations and predicts response to corticosteroids, and the usefulness of sputum eosinophilia as both a marker of exacerbation risk and biomarker for adjustment of corticosteroid treatment has been established for some time. However, attempts to develop surrogate markers, which would be more straightforward to deliver in the clinic, have been challenging. SUMMARY: Some patients with asthma have persistent symptoms in the absence of type-2 cytokine driven-eosinophilic airways inflammation due to noncorticosteroid responsive mechanisms (T2-low disease). Composite biomarker strategies using easily measured surrogate indicators of type-2 inflammation (such as fractional exhaled nitric oxide, blood eosinophil count and serum periostin levels) may predict exacerbation risk better but it is unclear if they can be used to adjust corticosteroid treatment. Biomarkers will be used to target novel biologic treatments but additionally may be used to optimize corticosteroid treatment dose and act as prognostics for exacerbation risk and potentially other important longer term asthma outcomes.


Assuntos
Asma , Asma/tratamento farmacológico , Asma/imunologia , Asma/fisiopatologia , Citocinas/imunologia , Humanos , Fenótipo , Medicina de Precisão , Prognóstico , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...